个人简介
袁帅,南京大学化学化工学院和配位化学国家重点实验室博士生导师、国家级青年人才计划入选者。2013年本科毕业于山东大学。2018年博士毕业于美国德克萨斯农工大学(Texas A&M University)(导师:Hong-Cai Zhou教授)。2018年至2021年在美国麻省理工学院从事博士后研究(合作导师:Yang Shao-Horn院士和Yuriy Román教授)。致力于配位化学、材料化学和催化学科前沿交叉领域,利用金属有机框架(metal-organic framework, MOF)和共价有机框架(covalent organic framework, COF)为平台设计多元功能材料,应用于能源环境等方面。相关成果发表在Nat. Mater., Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Joule, Matter等期刊,论文被引用17000余次,H指数66,2021、2022年度连续两年入选全球高被引科学家。课题组诚聘博士后和科研助理,欢迎报考博士及硕士研究生,有意者请来信咨询。 展示全部
工作经历
2018-2021:美国麻省理工学院,博士后 2021至今:南京大学化学化工学院、配位化学国家重点实验室,博士生导师 展示全部
研究方向
1)课题组受到生物酶三维催化位点的启发,以结构有序的多元多孔材料(如金属-有机框架,MOF)为平台,设计三维协同催化位点,打破传统表面催化剂的固有限制; 2)将三维协同位点的概念推广到MOF-复合材料领域,实现在原子精度上精确设计多元复合材料; 3)设计原型器件,将材料应用于协同催化、能源转化等重要领域。 学术成果
完整论文列表见:https://www.x-mol.com/groups/yuangroup/publications 2024 1. Ke, S.-W.; Li, W.,*; Gao, L.; Su, J.; Luo, R.; Yuan, S.*; He, P.*; Zuo, J.-L.*, Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Angew. Chem. Int. Ed.2024, 63, e202417493. 2. Qiao, M.; Li, Y.; Li, Y.; Chang, M.; Zhang, X.*; Yuan, S.*, Unlocking of Hidden Mesopores for Enzyme Encapsulation by Dynamic Linkers in Stable Metal‒Organic Frameworks. Angew. Chem. Int. Ed.2024, 63, e202409951. 3. Wang, B.; Liu, J.; Mao, C.; Wang, F.*; Yuan, S.*; Wang, X.*; Hu, Z., A MOF-Gel Based Separator for Suppressing Redox Mediator Shuttling in Li–O2 Batteries. Small2024, 20, 2401231. 4. Luo, R.; Luo, X.; Xu, H.; Wan, S.; Lv, H.; Zou, B.; Wang, Y.; Liu, T.; Wu, C.; Chen, Q.; Yu, S.; Dong, P.; Tian, Y.; Xi, K.; Yuan, S.*; Wu, X.*; Ju, H.; Lei, J.*, Reticular Ratchets for Directing Electrochemiluminescence. J. Am. Chem. Soc.2024, 146, 16681-16688. 5. Dong, P.; Xu, X.; Wu, T.; Luo, R.; Kong, W.; Xu, Z.; Yuan, S.*; Zhou, J.*; Lei, J.*, Stepwise Protonation of Three-Dimensional Covalent Organic Frameworks for Enhancing Hydrogen Peroxide Photosynthesis. Angew. Chem. Int. Ed.2024, 63, e202405313. 6. Zhou, X.; Wang, Y.; Gu, Y.; Su, J.; Liu, Y.; Yin, Y.; Yuan, S.*; Ma, J.*; Jin, Z.*; Zuo, J.-L.*, All-purpose redox-active metal-organic frameworks as both cathodic and anodic host materials for advanced lithium-sulfur batteries. Matter, 2024, 7, 3069-3082. 7. Gao, W.+; Li, Y.+; Zhang, X.*; Qiao, M.; Ji, Y.; Zheng, J.; Gao, L.; Yuan, S.*; Huang, H., DNA-Directed Assembly of Hierarchical MOF-Cellulose Nanofiber Microbioreactors with “Branch-Fruit” Structures. Nano Lett. 2024, 24, 3404-3412. 8. Ke, S.-W.+; Xin, J.+; Tang, L.+; Gao, L.; Cai, G.; Ding, M.; Yuan, S.*; Sun, J.*; Zuo, J.-L.*, Atomic-Resolution Crystal Structure of a Redox-Active Covalent Organic Framework with Ni-bis(dithiolene) Units. ACS Mater. Lett. 2024,6, 921-927. 9. Lei, L.; Zhao, B.; Pei, X.; Gao, L.; Wu, Y.; Xu, X.; Wang, P.; Wu, S.*; Yuan, S.*, Optimizing Porous Metal-Organic Layers for Stable Zinc Anodes. ACS Appl. Mater. Interfaces 2024,16, 485-495. 2023 10. Li, Y.; Su, J.; Zhao, Y.; Feng, L.; Gao, L.; Xu, X.; Yin, Y.; Liu, Y.; Xiao, P.; Yuan, L.; Qin, J.-S.; Wang, Y.; Yuan, S.*; Zheng, H.*; Zuo, J.-L.*, Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. J. Am. Chem. Soc. 2023,145, 10227-10235. 11. Dong, P.+; Xu, X.+; Luo, R.; Yuan, S.*; Zhou, J.*; Lei, J.*, Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO2 Photoreduction. J. Am. Chem. Soc. 2023,145, 15473-15481 12. Chen, W.; Wang, Z.; Wang, Q.; El-Yanboui, K.; Tan, K.; Barkholtz, H. M.; Liu, D.-J.; Cai, P.; Feng, L.; Li, Y.; Qin, J.-S.; Yuan, S.*; Sun, D.*; Zhou, H.-C.*, Monitoring the Activation of Open Metal Sites in [FexM3–x(μ3-O)] Cluster-Based Metal–Organic Frameworks by Single-Crystal X-ray Diffraction. J. Am. Chem. Soc. 2023, 145, 4736–4745 13. Zhou, X.-C.; Liu, C.; Su, J.; Liu, Y.-F.; Mu, Z.; Sun, Y.; Yang, Z.-M.; Yuan, S.*; Ding, M.*; Zuo, J.-L.*, Redox-Active Mixed-Linker Metal–Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing. Angew. Chem. Int. Ed., 2023,62, e202211850. 14. Shi, X.; Ling, Y.; Li, Y.; Li, G.; Li, J.; Wang, L.; Min, F.; Hübner, R.; Yuan, S.*; Zhan, J.; Cai, B.*, Complete Glucose Electrooxidation Enabled by Coordinatively Unsaturated Copper Sites in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2023,62, e202316257. 15. Wang, K.-Y.; Yang, Z.; Zhang, J.; Banerjee, S.; Joseph, E. A.; Hsu, Y.-C.; Yuan, S.*; Feng, L.*; Zhou, H.-C.*, Creating hierarchical pores in metal–organic frameworks via postsynthetic reactions. Nat. Protoc. 2023,18, 604-625. 16. Huang, Z.; Cao, S.; Feng, C.; Li, Y.; Liang, Y.; Li, X.; Mei, H.; Fan, W.; Ben, X.; Yuan, S.*; Dai, F.; Lu, X.; Hu, S.; Sun, D.*, Polydopamine Bridging Strategy Enables Pseudomorphic Transformation of Multi-Component MOFs into Ultrasmall NiSe/WSe2@NC Heterojunctions for Enhanced Alkaline Hydrogen Evolution. Appl. Catal. B 2023,334, 122769. 17. Li, Y.-Y.+; Xiao, J.-M.+; Xie, M.; Wu, L.-F.; Chen, Y.-F.; Yuan, S.*; Bin, D.-S.*; Zuo, J.-L.*, A Robust Conductive Covalent Organic Framework for Ultra-Stable Potassium Storage. J. Mater. Chem. A 2023,11, 24661-24666. 18. Ma, T.-R.; Ge, F.; Ke, S.-W.; Lv, S.; Yang, Z.-M.; Zhou, X.-C.; Liu, C.; Wu, X.-J.*; Yuan, S.*; Zuo, J.-L.*, Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response. Small 2023,19, 2308013. 2022 19. Yuan, S.; Peng, J.; Cai, B.; Huang, Z.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y.; Giordano, L.; Akkiraju, K.; Zhu, Y.; Hübner, R.; Zou, X.; Román-Leshkov, Y.; Shao-Horn, Y., Tunable Metal-Hydroxide-Organic Frameworks for Catalyzing Oxygen Evolution. Nat. Mater. 2022,21, 673-680. 20. Ke, S.-W.; Wang, Y.; Su, J.; Liao, K.; Lv, S.; Song, X.; Ma, T.; Yuan, S.*; Jin, Z.*; Zuo, J.-L.*, Redox-Active Covalent Organic Frameworks with Nickel–Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries. J. Am. Chem. Soc. 2022,144, 8267-8277. 21. Lei, L.; Chen, F.; Wu, Y.; Shen, J.; Wu, X.-J.; Wu, S.*; Yuan, S.*, Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Sci. China Chem. 2022,65, 2205-2213. Before 2022 22. Yuan, S.; Li, Y.; Peng, J.; Questell-Santiago, Y. M.; Akkiraju, K.; Giordano, L.; Zheng, D. J.; Bagi, S.; Román-Leshkov, Y.; Shao-Horn, Y., Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Adv. Energy Mater. 2020, 10, 2002154. 23. Yuan, S.; Huang, L.; Huang, Z.; Sun, D.; Qin, J.-S.; Feng, L.; Li, J.; Zou, X.; Cagin, T.; Zhou, H.-C., Continuous variation of lattice dimensions and pore sizes in metal–organic frameworks. J. Am. Chem. Soc. 2020,142, 4732-4738. 24. Li, J.; Yuan, S.*; Qin, J.-S.; Pang, J.; Zhang, P.; Zhang, Y.; Huang, Y.; Drake, H. F.; Liu, W. R.; Zhou, H.-C.*, Stepwise Assembly of Turn-on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for in Vitro Cyanide Detection. Angew. Chem. Int. Ed. 2020, 59, 9319-9323. 25. Fan, W.+; Yuan, S.+; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H.-C., Optimizing multivariate metal–organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020. 142, 8728–8737. (+co-first author) 26. Su, J.+; Yuan, S.+; Wang, T.; Lollar, C. T.; Zuo, J.-L.; Zhang, J.; Zhou, H.-C., Zirconium metal–organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles. Chem. Sci. 2020,11, 1918-1925. (+co-first author) 27. Yuan, S.*; Peng, J.; Zhang, Y.; Shao-Horn, Y.*, Stability Trend of Metal–Organic Frameworks with Heterometal-Modified Hexanuclear Zr Building Units. J. Phys. Chem. C 2019, 123, 28266-28274. 28. Feng, L.; Yuan, S.*; Qin, J.-S.; Wang, Y.; Kirchon, A.; Qiu, D.; Cheng, L.; Madrahimov, S. T.; Zhou, H.-C.*, Lattice expansion and contraction in metal-organic frameworks by sequential linker reinstallation. Matter 2019. 1 , 156-167. 29. Pang, J.+; Yuan, S.+; Qin, J.; Lollar, C. T.; Huang, N.; Li, J.; Wu, M.; Yuan, D.; Hong, M., Zhou, H.-C., Tuning the Ionicity of Stable Metal-Organic Frameworks through Linker Installation. J. Am. Chem. Soc. 2019, 141, 3129–3136. (+co-first author) 30. Qin, J.+; Yuan, S.+; Zhang, L.; Li, B.; Du, D.-Y.; Huang, N.; Guan, W.; Drake, H.; Pang, J.; Lan, Y.-Q.; Alsalme, A.; Zhou, H.-C., Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation. J. Am. Chem. Soc.2019, 141, 2054–2060 (+co-first author) 31. Xiao, Z.+; Mei, Y.+; Yuan, S.+; Mei, H.; Xu, B.; Bao, Y.; Fan, L.; Kang, W.; Dai, F.; Wang, R.; Wang, L.; Hu, S.; Sun, D.; Zhou, H.-C., Controlled Hydrolysis of Metal–Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors. ACS Nano 2019. DOI: 10.1021/acsnano.9b02106. (+co-first author) 32. Yuan, S.+; Zhang, P.+; Zhang, L.; Garcia-Esparza, A. T.; Sokaras, D.; Qin, J.-S.; Feng, L.; Day, G. S.; Chen, W.; Drake, H. F.; Elumalai, P.; Madrahimov, S. T.; Sun, D.; Zhou, H.-C., Exposed equatorial positions of metal centers via sequential ligand elimination and installation in MOFs. J. Am. Chem. Soc. 2018, 140, 10814-10819. (+co-first author) 33. Yuan, S.+; Qin, J.-S.+; Li, J.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J; Zhang, L.; Sun, D.; Alsalme, A.; Cagin, T.; Zhou, H.-C. Retrosynthesis of multi-component metal−organic frameworks, Nat. Commun.2018, 9, 808. (+co-first author) 34. Yuan, S.+; Qin, J.-S.+; Su, J.; Li, B.; Li, J.; Chen, W.; Drake, H. F.; Zhang, P.; Yuan, D.; Zuo, J.; Zhou, H.-C., Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angew. Chem. Int. Ed.2018, 57, 12578-12583. (+co-first author) 35. Yuan, S.+; Qin, J.-S.+; Xu, H.-Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H.-L.; Son, D. H.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H.-C., [Ti8Zr2O12(COO)16] Cluster: An ideal inorganic building unit for photoactive metal–organic frameworks. ACS Cent. Sci., 2018, 4, 105-111. (+co-first author) 36. Yuan, S.; Qin, J.-S.; Lollar, C.; Zhou, H.-C., Stable metal−organic frameworks with group 4 metals: current status and trends, ACS Cent. Sci., 2018,4, 440-450. 37. Yuan, S.; Feng, L.; Wang, K.; Pang, J; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.-S.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Stable metal-organic frameworks: design, synthesis, and applications, Adv. Mater.2018, 30, 1704303. (cover article) 38. Pang, J.; Yuan, S.*; Qin, J.; Wu, M.; Lollar, C. T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H.-C.*, Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal–organic frameworks. J. Am. Chem. Soc. 2018,140, 12328-12332. 39. Yang, X.+; Yuan, S.+; Zou, L.; Drake, H.; Zhang, Y.; Qin, J.; Alsalme, A.; Zhou, H., One-step synthesis of hybrid core-shell metal-organic frameworks. Angew. Chem. Int. Ed., 2018,57, 3927-3932. (+co-first author) 40. Zhang, L.+; Yuan, S.+; Feng, L.+; Guo, B.; Qin, J. S.; Xu, B.; Lollar, C.; Sun, D.; Zhou, H. C., Pore‐environment engineering with multiple metal sites in rare-earth porphyrinic metal–organic frameworks. Angew. Chem. Int. Ed. 2018,57, 5095-5099. (+co-first author) 41. Yuan, S.; Zou, L.; Qin, J.-S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; Zhou, H.-C. Construction of hierarchically porous metal−organic frameworks through linker labilization, Nat. Commun. 2017, 8, 15356. 42. Yuan, S.+; Sun, X.+; Pang, J; Lollar, C.; Qin, J.-S.; Perry, Z.; Joseph, E.; Wang, X.; Fang, Y.; Bosch, M.; Sun, D.; Liu, D.; Zhou, H.-C. PCN-250 under pressure: sequential phase transformation and the implications on MOF densification, Joule, 2017, 1, 806-815. (+co-first author) 43. Xu, M.+; Yuan, S.+; Chen, X.-Y.; Chang, Y.-J.; Day, G.; Gu, Z.-Y.; Zhou, H.-C. Two-dimensional metal-organic framework nanosheets as an enzyme inhibitor: modulation of the α-chymotrypsin activity. J. Am. Chem. Soc.2017, 139, 8312-8319. (+co-first author) 44. Su, J.+; Yuan, S.+; Wang, H. Y.; Huang, L.; Ge, J.; Joseph, E.; Qin, J.-S.; Cagin, T.; Zuo, J.-L.; Zhou, H.-C. Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks. Nat. Commun.2017,8, 2008. (+co-first authors) 45. Pang, J. +; Yuan, S.+; Qin, J.; Liu, C.; Lollar, C.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M., Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J. Am. Chem. Soc.2017, 139, 16939-16945. (+co-first authors) 46. Pang, J. +; Yuan, S.+; Du, D.; Lollar, C.; Zhang, L.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M., Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions. Angew. Chem. Int. Ed.2017, 56, 14622-14626. (+co-first authors) 47. Yuan, S.+; Chen, Y.-P.+; Qin, J.-S.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H.-C. Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs, J. Am. Chem. Soc.2016, 138, 8912-8919. (+co-first author) 48. Yuan, S.+; Qin, J.-S.+; Zou, L.; Chen, Y.-P.; Wang, X.; Zhang, Q.; Zhou, H.-C. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tunability, J. Am. Chem. Soc.,2016, 138, 6636–6642. (+co-first author) 49. Yuan, S.+; Zou, L.+; Li, H.; Chen, Y.-P.; Qin, J.; Zhang, Q.; Lu, W.; Hall, M. B.; Zhou, H.-C. Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts, Angew. Chem. Int. Ed.,2016, 55, 10776-10780. (+co-first author) 50. Yuan, S.; Chen, Y-P., Qin, J., Lu, W., Wang, X., Zhang, Q., Zhou, H.-C. Cooperative cluster metalation and ligand migration in zirconium metal–organic frameworks. Angew. Chem. Int. Ed.2015, 54, 14696-14700. 51. Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc.2015, 137, 3177-3180. 课程名称、上课时间地点
课程名称:大学化学(英文) 课程号:38030010 上课时间:秋季学期1-16周 课程名称:无机专题讨论 课程号:070301X03 上课时间:秋季学期1-14周 教学大纲、考试要求
“大学化学(英文)”教学大纲 一、课程名称:大学化学 General Chemistry 二、学分学时:3 学分/ 48 学时 1. Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste, 2024, Chemistry, 11th Edition, Cengage Learning, 1200pp. 四、课程属性:通识通修课程/必修 五、先修课程:高中化学 六、课程简介和教学目标: 课程简介:本课程从科学发展的历史角度,深入浅出地介绍科学与科学方法、物质结构和状态、化学热力学、化学平衡、化学动力学等基本化学原理。通过本课程的学习,使学生了解物质微观结构的基础理论,包括原子结构、化学键和分子间相互作用;掌握热力学基础理论、化学反应的方向与平衡、化学反应的时间及其在多学科领域的应用;了解地球大气科学与地球水循环中的化学知识。本课程结合必要的实验现象和数据,介绍一些概念的产生与演变,利于学生怀疑精神、创新精神和科学思维的培养。 教学目标:通过本门课程的学习,使学生掌握普通化学的基本原理,基本规律和一些基本化学知识,为后继大气化学课以及相关的更高阶段的大气科学、环境科学奠定必要的化学基础。使学生们认识到在他们未来从事的技术领域和社会生活中存在着化学世界,能把渗透在生活和工程实际问题中的知识,与化学变化的基本理论相结合。引导学生能在工作和生活中以化学的思维观察物质的变化,培养学生分析处理工程实际和生活中化学问题的能力。 七、课程要求: 在高中化学的基础上,系统讲授普通化学原理。本课程主要采用板书和多媒体结合的课程讲授方式并结合课堂问题讨论,实行师生互动研究型教学,要求学生课前必须认真阅读教材及相关的参考资料,课堂上主动积极思考,记录课堂上讲解的重点和难点,课后有重点的复习和按时完成布置的作业,疑难问题实行师生互动交流。要求学生能利用课堂上讲授的化学基础知识正确地解释化学实验中所观察到的实验现象,在实验中巩固化学理论知识。本课程具体要求: 1.课前预习; 2.5-7 次课外作业; 3.一篇课程论文; 4.一次期中考试; 5.一次期末考试。 八、考核方式: 实行综合考评,平时成绩(课堂表现+课外作业+小论文,占30%)+ 考试成绩(闭卷考试,占70%,其中期中考试30%,期末考试40%) 九、课程教学内容 第I部分物质结构与状态 1.引言:科学与化学 2. 原子结构与元素周期律 2.1 原子模型的建立和微观粒子的波粒二象性 2.2 波函数与薛定谔方程 2.3 单电子原子的原子结构 2.4 多电子原子的原子结构 2.5 原子结构和元素周期律 3. 分子与化学键 3.1 从原子(元素)到分子 3.2 经典化学键与价键理论 3.3 化学键的分子轨道理论 3.4 化学键与分子结构 3.5 物质的状态与固体化学 3.6 大气科学中的化学(元素化学) 3.7 过渡金属与配位化学 4. 热力学基础 4.1 热力学的基本框架 4.2 热力学第一定律 4.3 热力学第二定律 5. 物质的状态 5.1气体 5.2 溶液与胶体 第III部分化学平衡与相平衡 6. 化学平衡与相平衡 6.1化学平衡 6.2 酸碱平衡 6.3 沉淀平衡 6.4 氧化还原平衡与电化学 第IV部分化学动力学 第V部分核化学 第VI部分有机化学 教学资源(上课讲义、参考资料等)
课题组风采
|
版权所有 © 南京大学 |